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Supplementary Note 1: Geometric reconstruction 

Construction of 2D modular origami structures 

Our geometric reconstruction primarily used for 3D curvilinear architected structures in the main text can 
also be applied to planar cases, as illustrated in Supplementary Figure 1. A unit cell can be mapped to a 
target planar geometry followed by planar shrinkage. One can extrude tubes parallel to the lines 
connecting adjacent centroids of the shrunken polyhedrons to make origami modules, connecting with 
adjacent modules to construct an assembly.  

 

 

Supplementary Figure 1. Geometric reconstruction of a planar 2D curvilinear architected structure with a 2 × 2 × 1 mapping of 
a unit cell. 

Size dependency on mapping 

We quantify the effect of mapping density on the volumetric change of a unit cell. We fill a sphere by 
mapping a cubic unit cell with different system sizes, as shown in Supplementary Figure 2a. The selected 
polyhedron, which is commonly close to the boundary of the template, undergoes a severe volume change 

as the system size increases, as illustrated in Supplementary Figure 2b. The volume change (𝑉𝑝0
− 𝑉𝑝) 𝑉𝑝0

⁄  

of the polyhedron continuously increases from 49.9% to 84.3% as the mapping density increases from 
2 × 2 × 2 to 6 × 6 × 6, where 𝑉𝑝0

 and 𝑉𝑝 are the volumes of the polyhedron before and after mapping, 

respectively.  

We also quantify the effect of the mapping density on the filling efficiency, as indicated by the volumetric 
ratio 𝑉𝑔 𝑉0⁄  in Supplementary Figure 2c. 𝑉g and 𝑉0 are the volumes of the template and the target shape, 

respectively. Although it is apparent that a denser mapping approximates the targeting shape with higher 
accuracy, we notice a specific system size may balance the accuracy and computational cost. In this 
example with a spherical target shape, a 3 × 3 × 3  system provides a good filling accuracy of 
𝑉𝑔 𝑉0⁄ (= 90.62%), close to the filling accuracy of a 4 × 4 × 4 system with 𝑉𝑔 𝑉0⁄ (= 93.76%). Note that 

the 3 × 3 × 3 system uses a much smaller number of polyhedrons (27) than the 4 × 4 × 4 system (64), 
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indicating the filling efficiency of the 3 × 3 × 3 system.  

 

Supplementary Figure 2. Effect of system size on the volume of mapping template: (a) mapping of cubic unit cells into spheres 
with different system sizes; a single polyhedron at the same corner of the template with a different system size is shown to 

compare mapping densitie; (b) volumetric change ratio (𝑉𝑝0
− 𝑉𝑝) 𝑉𝑝0

⁄  of a single polyhedron with mapping size; (c) effect of 

denser mapping on the ratio 𝑉𝑔 𝑉0⁄  , where 𝑉𝑔 is the template volume and 𝑉0 is the volume of the target shape. 
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Supplementary Figure 3. Nonuniformly tessellated sphere structures constructed by geometric reconstruction of 28-unit cells: # 1 
tetrahedra and octahedra (number of units 2:1); #2 tetrahedra and octahedra (number of units 4:2); #3 tetrahedra, octahedra, 
and triangular prisms (number of units 2:1:2); #4 tetrahedra, octahedra, and triangular prisms (number of units 4:2:4); #5 
tetrahedra, rhombicuboctahedra, and cubes (number of units 2:1:1); #6 tetrahedra and truncated tetrahedra (number of units 
2:2); #7  octahedra and cuboctahedra (number of units 1:1); #8  octahedra and truncated cubes (number of units 1:1);  #9  
cuboctahedra, rhombicuboctahedra and cubes (number of units 1:1:3); #10    cuboctahedra, truncated tetrahedra and truncated 
octahedra (number of units 1:1:2); #11 Triangular prisms (2 of them comprise a unit); # 12  Triangular prisms (4 comprise a unit); 
#13 triangular prisms and cubes (number of units 2:1); #14 triangular prisms and cubes (number of units 2:1); #15  triangular 
prisms and cubes (number of units 4:2); #16  triangular prims, cubes and hexagonal prisms (number of units 2:3:1); #17 triangular 
prisms and hexagonal prisms (number of units 8:1); #18 triangular prisms and hexagonal prisms (number of units 2:1); #19 
triangular prisms and dodecagonal prisms (number of units 2:1); #20  rhombicuboctahedra, truncated cubes, cubes and octagonal 
prisms (number of units 1:1:3:3); #21  truncated tetrahedra, truncated cubes and truncated cuboctahedra (number of units 2:1:1); 
#22 cubes; #23 cubes, hexagonal prisms and dodecagonal prisms (number of units 3:2:1); #24 cubes and hexagonal prisms 
(number of units 1:1); #25 cubes, truncated octahedra and truncated cuboctahedra (number of units 3:1:1); #26 hexagonal prisms; 
#27 octagonal prisms and truncated cuboctahedra (number of units 3:1); #28  truncated octahedra.  
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Supplementary Note 2: Inverse design of reconfigurability 

After the geometric reconstruction, the modules constructed from the shrunken polyhedrons generally 
produce immobility due to the irregular polygon tubes; the spatially connected irregular polygon tubes 
produce immobility. Some modules consist of a combination of regular and irregular polygon tubes, 
partially producing mobility. However, the mobility of the flexible modules is damaged when connected 
with adjacent rigid modules, as illustrated in Supplementary Figure 4. 

 

Supplementary Figure 4. Nonperiodic tessellation of a cubic unit cell producing different DOFs between the assembly and its 
modules. Rigid modules lock their mobility. Flexible modules consisting of partially regular and irregular polygon tubes have a 
limited range of motion. 

Geometric modification with varying polygon tubes 

Foldability conditions  

The foldability constraints in Equations (4) and (5) in the main text, 𝐈𝑡 ∙ 𝐝𝑡 = 𝟎  and 𝐉𝑞 ∙ 𝛉𝑞 = 𝟎 , vary 

depending on the shape of the polygons where prismatic tubes are extruded. Supplementary Figure 5 
presents examples of the form of the foldability constraints for varying polygons. We focus on the tubes 
with parallel hinges to explain the form of 𝐈𝑡 ∙ 𝐝𝑡 = 𝟎  in these examples; however, the principles of 
applying constraints are the same for the tubes with intersecting hinges, where 𝐉𝑞 ∙ 𝛉𝑞 = 𝟎. 

For instance, in the case in Supplementary Figure 5a.1 with the strictest constraints on foldability, we have 

𝐈𝑡 ∙ 𝐝𝑡 = [
1 −1 0 0
0 1 −1 0
0 0 1 −1

] ∙

[
 
 
 
 
𝑑1𝑡

 

𝑑2𝑡

𝑑3𝑡

𝑑4𝑡 ]
 
 
 
 

= [

0
0
0
0

],                                                  (1)   

The quadrilateral tubes satisfying these constraints have a rhombic cross-section, reaching its maximum 
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sole motion for flat-foldability along any folding path. 

For the tube in Supplementary Figure 5b.1 with an odd-number face in a pentagon shape, 

𝐈𝑡 ∙ 𝐝𝑡 = [
1 0 −1 −1 0
0 1 0 0 −1

] ∙

[
 
 
 
 
 
𝑑1𝑡

 

𝑑2𝑡

𝑑3𝑡

𝑑4𝑡

𝑑5𝑡 ]
 
 
 
 
 

=

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

,                                          (2)  

The pentagonal tube reaches its maximum sole motion for flat-foldability along two possible folding paths. 

In a single tube, a higher number of foldability constraints increase the range of motion. In the example 
where 𝑓 = 4, the quadrilateral tube with a higher number of constraints is flat-foldable along any path, as 
shown in Supplementary Figures 5a.1 and a.2. However, the tube with one constraint can only be flat-
folded along one path, as shown in Supplementary Figure 5a.3.  

In this study, we applied the strictest foldability constraints possible, with the maximum number of 
constraints (𝑟𝑡 or 𝑟𝑞) for each tube — the cases of Supplementary Figure 5a.1, b.1, and c.1. However, when 

the targeting shape is complicated, it may be challenging for the algorithm to find a solution while 
simultaneously satisfying the maximum foldability of the tubes and other constraints during geometric 
modification, e.g., persevering the targeting shape and enforcing planar plates, as described in Equations 
(3) and (6) of the main text. In this context, we apply a weaker foldability constraint such as that in 
Supplementary Figures 5a.2, a.3, b.2, c.2, and c.3. 

 

Supplementary Figure 5. Schematics of case-dependent foldability constraints: (a) the quadrilateral tubes (f=4) are viewed as a 
linkage from the perspective perpendicular to the hinges; (a.1) modified tube with the strictest foldability conditions, i.e., 𝑑1 =
𝑑2 = 𝑑3 = 𝑑4 (the folding paths are shown as the dashed lines connecting hinges pairs); (a.2) medium strict foldability 
constraints; and (a.3) loose foldability constraints; (b) modified tube in a pentagon shape with 𝑓 = 5; (b.1) the modified tube 
can be folded flat along the two dashed lines; (b.2) the modified tube with only one folding path; (c) cases with different 



 16 

foldability constraints in the hexagonal tube with 𝑓 = 6. In this study, the tubes extruded from the triangular faces could be 
exempted from geometrical modification due to their immobility.  

Implementation  

Note that the prismatic architected structures produced by the geometric reconstruction serve as an initial 
guess for the design of reconfigurable structures. As a preprocess of reconfigurability, we proceed with a 
geometric modification by solving the optimization problem in Equations (3) to (6) in the main text using 
the optimization tool fmincon in MATLAB. 

The objective function, foldability, and the planar-face constraints in Equations (3)–(6) in the main text are 
functions of nodal position vectors (𝐯1, 𝐯2, 𝐯3,… , 𝐯𝑁) of the architected materials with full nodes 𝑁. We 
also specify gradient information for both the objective function and constraints using options of 
SpecifyObjectiveGradient and SpecifyConstraintGradient in fmincon. 

The structural integrity of topological reconstruction 

We apply the constraints on the graph structure in Equations (9) and (10) in the main text, −𝐶𝑖 + 2 ≤  0 
and 𝐶𝑝 − 1 =  0,  where 𝐶𝑖   is the number of connections on the 𝑖 -th node. 𝐶𝑝(𝐱)  is the number of 

connected graph components that ensure the structural integrity of the assembly of origami modules. 
Specifically, Equation (9) avoids local reconfigurability by excluding solely connected origami modules in 
the assembly of Supplementary Figure 6a; every module at least connects two adjacent ones. Constraint 
𝐶𝑝(𝐱) − 1 = 0  on the graph structure avoids disconnection and biconnected topology in the origami 

assembly, as demonstrated in Supplementary Figures 6b and S6c. 𝐶𝑝(𝐱) can be calculated using the built-

in function conncomp in MATLAB. 

 

Supplementary Figure 6. Examples of topology (graph): (a) a disqualified topology due to the solely connected 5-th node; (b) a 
disqualified topology due to the disconnected 7-th node; (c) a disqualified topology due to the biconnected component, where 
𝐶𝑝 = 2;(d) a qualified graph.  

Validation of top-down approach with 2D motion structures 

To validate our inverse design with the kinematic mobility analysis (bottom-up approach), we present 
simple assemblies of 2D bar mechanisms. While removing links (bars) from a 3 × 3  linkage in 
Supplementary Figures 7a and 7b, we obtain mobility using Kutzbach’s modification of Gruebler’s mobility 
equation: 

𝑀 = 3(𝐿 − 1) − 2(𝐽1 + 𝐽𝑚),                                                       (3)  

where 𝑀 is the mobility, 𝐿 is the number of links, 𝐽1 is the number of full joints, and 𝐽𝑚  is the number of 
multiple joints counting as one less than the number of links joined at the point. Note that the nodes and 
edges in Supplementary Figures 7a and 7b represent hinges and binary links, respectively. 
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We compare the kinematic analysis with our inverse design via the topological reconstruction. Similar to 
Equations (7)–(10) in the main text, we formulate the design problem for target mobility 𝑁𝑑𝑜𝑓 : 

 min (𝑁𝑑𝑜𝑓(𝐱) − 𝑁𝑑𝑜𝑓)
2
 (4) 

                   𝑠. 𝑡. 

 

 𝑥𝑖 ∈ [0,1]           for 𝑖 = 1,2,3,… , 𝑁𝑒 (5) 

−𝐶𝑗(𝐱) + 2 ≤  0,         for 𝑗 = 1,2,3,… , 𝑁𝑣          (6) 

𝐶𝑝(𝐱) − 1 =  0,              (7) 

where the binary design parameter 𝑥𝑖 represents the existence of the 𝑥𝑖-th link, with 0 representing the 

links removed. 𝑁𝑒 and 𝑁𝑣 are the total number of links and hinges before removal, respectively. 𝑁𝑑𝑜𝑓(𝐱) 

is the mobility for a combination of 𝐱. The constraints in Supplementary Equations (6) and (7) control the 
structural integrity of the assembly, where 𝐶𝑖(𝐱) is the number of connections on the 𝑖-th node and 𝐶𝑝(𝐱) 

is the number of connected graph components. 

As shown in Supplementary Figure 7c, our inverse design validates the analytical solution of kinematics. 
Notably, our top-down approach computationally explores the entire design space; our inverse design 
provides multiple solutions for a targeting 𝑛𝑑𝑜𝑓, as shown in Supplementary Figures 7c–7e. 

 

Supplementary Figure 7. Validation of the inverse design with the kinematic mobility analysis: (a) a fully connected bar-linkage 

mechanism (𝑁𝑑𝑜𝑓 = 5) in 3 x 3 size; (b) linkages and their mobility calculated using Gruebler’s mobility equation; (c) a scatter 

plot showing 30 designs identified using the topological reconstruction algorithm; each point represents one or several distinct 

designs. For example, there are four different designs for (d) 𝑁𝑑𝑜𝑓 = 8 and (e) 𝑁𝑑𝑜𝑓 = 7.  
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Supplementary Note 3: Mobility analysis and simulation of 
transformation  

To identify the DOFs of reconfigurable modular origami comprising rigid faces and flexible hinges, we 
calculate the number of free variables associated with the linearized constraint matrix1. We triangulate 
each face of the structure to facilitate the description of geometric constraints, for which an additional 
diagonal edge is generated on the face, as shown in Supplementary Figure 8a. We describe the length 

constraint on two vertices on the 𝑖-th edge as (𝐯𝑎𝑖
− 𝐯𝑏𝑖

) ∙ (𝐯𝑎𝑖
− 𝐯𝑏𝑖

) = 𝐿𝑖
2, for 𝑖 = 1,2,3, … , 𝐸, where 

𝐯𝑎𝑖
  and 𝐯𝑏𝑖

  are the position vectors of the two vertices, 𝐿𝑖   is the length of the 𝑖 -th edge, and 𝐸  is the 

number of total edges. Next, we prescribe the plane constraints of flat faces such that all the vertices on 

the 𝑗 -th face remain planar during the transformation, i.e., (𝐯4𝑗
− 𝐯2𝑗

) ∙ [(𝐯1𝑗
− 𝐯2𝑗

) × (𝐯3𝑗
− 𝐯2𝑗

)] =

0 for 𝑗 = 1,2,3,… , 𝐹, where 𝐹 is the total number of faces. After linearizing the above two constraints and 
assembling them into a matrix 𝐉𝑣, we obtain 𝐉𝑣 ∙ 𝑑𝐯 = 𝟎, where 𝑑𝐯 is a vector indicating the infinitesimal 
displacement of every vertex. Finally, the number of DOFs is obtained as 3 ∙ 𝑛𝑣 − rank(𝐉𝑣) − 6, where 𝑛𝑣 
is the total number of vertices in the structure and the rank of 𝐉𝑣 indicates the number of independent 
constraints. 

The transformation process of a multi-DOF reconfigurable structure can be simulated by folding the 
dihedral angles of independent hinges. To find such independent hinges, we combine 𝑑𝛟 = 𝐉ℎ ∙ 𝑑𝐯, where 

𝑑𝛟 is the infinitesimal change in all the hinge angles, with the equation 𝐉𝑣 ∙ 𝑑𝐯 = 𝟎, leading to 𝐉 ∙ [
𝑑𝐯
𝑑𝛟

] =

𝟎. Here, we have 𝐉 = [
𝐉𝑣 𝟎
𝐉ℎ −𝟏

], as mentioned in the main text. For 𝑑𝛟 = 𝐉ℎ ∙ 𝑑𝐯, the Jacobian matrix 𝐉ℎ 

has the following entries: 

𝐽ℎ[𝑟,3∙(𝑛−1)+𝑗] =
𝜕𝜙𝑟

𝜕𝑣𝑗,𝑛
,                                                                (8) 

where 𝑗 = 1,2, and 3 . 𝑑𝑣𝑗,𝑛  is the displacement of the 𝑛 -th vertex along the 𝑗 -th axis of a Cartesian 

coordinate, 𝑟 = 1,… 𝑇.  𝑇  is the total number of selected hinges, and 𝑛 = 1,2,3… ,𝑁 . 𝑁  is the total 
number of vertices in the structure. A detailed derivation of 𝐉ℎ can be found elsewhere2. 

Next, we find the free column in the reduced row echelon form of 𝐉. The free column corresponds to free 

variables in [
𝑑𝐯
𝑑𝛟

]. All the free variables can be found in 𝑑𝛟, i.e., the independent angles.  

We obtain the transformed configurations of the reconfigurable architected materials using a numerical 
iterative method that applies a projection matrix to reduce numerical errors3. In each iteration, the input 

is a slight increase [
𝟎

𝑑𝛟0
]  in the actuating angles, and the output is a displacement vector [

𝑑𝐯
𝑑𝛟

]  while 

satisfying the kinematics constraints. Between the input and output, there is  

[
𝑑𝐯
𝑑𝛟

] = −𝐉+𝐫 + [𝐈 − 𝐉+𝐉] [
𝟎

𝑑𝛟0
],                                                     (9) 

where [𝐈 − 𝐉+𝐉]  is the projection matrix, 𝐉+  is the pseudo-inverse of 𝐉 , and 𝐈  is a unit matrix. The term 
−𝐉+𝐫 in Supplementary Equation (9) reduces the numerical error in each iteration with a residual vector 

𝐫 = [r𝑒1
, r𝑒2

, … , r𝑒𝐸
, r𝑓1 , r𝑓2 , … , r𝑓𝐹

]
𝑇

 , where r𝑒𝑖
= (𝐯𝑎𝑖

− 𝐯𝑏𝑖
) ∙ (𝐯𝑎𝑖

− 𝐯𝑏𝑖
) − 𝐿𝑖

2  is the residual of the 

constraint of the 𝑖 -th edge and r𝑓𝑗
= (𝐯𝑎𝑗

− 𝐯2𝑗
) ∙ [(𝐯1𝑗

− 𝐯2𝑗
) × (𝐯3𝑗

− 𝐯2𝑗
)]  is the residual of the 

constraint for the 𝑗-th face. 𝐫 = [𝟎] in the first iteration. 
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To avoid overlapping of the faces during the transformation, we limit the range of dihedral angles of every 
hinge to 0 ≤  𝜙 ≤ 𝜋, where 

      𝜙 = 𝜋 − tan−1 (𝐩 ∙
(𝐧𝑎 × 𝐧𝑏)

𝐧𝑎 ∙ 𝐧𝑏
).                                                      (10) 

Here, the normal vectors on the faces are 𝐧𝑎 =
𝐩×𝐪𝑏

|𝐩|∙|𝐪𝑏|
 and 𝐧𝑏 =

𝐪𝑏×𝐩

|𝐪𝑏|∙|𝐩|
, as illustrated in Supplementary 

Figure 8b.  

 

Supplementary Figure 8. An example to identify rigid faces and flexible hinges; (a) a schematic of the triangulated face of a 
modular origami module; (b) the dihedral angle with the associated vectors.  
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Supplementary Note 4: Fabrication of physical models 

Rigid structures 

The geometry reconstruction using the volumetric mapping and shrinkage in the main text provides stiff 
and immobile structures suitable for lightweight structural applications. We prototype a rigid model using 
multi-material inkjet 3D printing (MultiJet, ProJet MJP 5600, 3D systems). To generate an input file for 3D 
printing, we write a MATLAB script converting a thin-walled model (Supplementary Figure 9a) into one 
with a prescribed wall thickness (Supplementary Figure 9b). For the multiJet printing, the thicknesses of 
the plate 𝑡𝑝 and hinges 𝑡ℎ  can be close (0.7𝑡𝑝 ≤ 𝑡ℎ ≤ 𝑡𝑝), as shown in Supplementary Figure 9c. We assign 

VisiJet CR-CL (𝐸~1.3GPa ) to the faces and VisiJet CE-BK (𝐸~0.3 𝑀𝑃𝑎 ) to the hinges of the model. 
Supplementary Figure 9d shows a printed prototype. 

 

 

Supplementary Figure 9. A rigid origami structure: (a) a spherical prismatic architected material with 3 × 3 × 3 modules after 
the geometric reconstruction by the spatially gradient tessellation of a cubic reference unit; (b) meshed file of (a) in 
SOLIDWORKS; (c) a zoomed-in view of a hinge and face; (d) prototype prepared using multiJet printing. Scale bar, 1cm. 

Reconfigurable structures 

The geometric modification and topological reconstruction in the main text can build reconfigurable 
structures. We fabricate reconfigurable prototypes using i) assembly of patterned paperboards and ii) 
additive manufacturing by stereolithography (SLA) using Form 3 (Formlabs). For the assembly of a thin-
walled model in Supplementary Figure 10a, we generate a papercutting path on paperboards 
(Supplementary Figure 10b) using an in-house pattern cutting machine, followed by connecting hinges 
with transparent tapes, as shown in Supplementary Figure 10c. Seeking fully automatic manufacturing, 
we utilize additive manufacturing with a single material. We set 0.05𝑡𝑝 ≤ 𝑡ℎ ≤ 0.5𝑡𝑝  and assign a single 

soft material (Flexible 80A with 𝐸~2.3 MPa) for the entire model, as shown in Supplementary Figures 10d 
and 10e. Supplementary Figure 10f shows a printed reconfigurable prototype. 
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Supplementary Figure 10. A reconfigurable modular origami structure: (a) a spherical prismatic modular origami structure with 
a spatially gradient tessellation of a tetrahedron reference unit; (b) the papercutting path of a selected module from (a) in 
SOLIDWORKS; (c) a paperboard prototype of the model (a); (d) a meshed file of (a) in SOLIDWORKS; (e) a zoomed-in view of a 
hinge and a face; (f) a prototype prepared by SLA printing.  

Magnetic actuation 

To demonstrate a reconfigurable structure (Supplementary Figure 11a) remotely controllable, we printed 
a hyperboloid prismatic modular origami using the topological reconstruction of tetrahedron modules and 
selectively embedded six permanent magnets (NdFeB) into triangular tubes, as shown in Supplementary 
Figures 11c and 11d. We used ethyl vinyl acetate (EVA) hot glue to bond the magnets to the printed 
prototypes; the location of the magnets and their remnant flux orientation are shown in Supplementary 
Figures 11c and 11d. 

We apply a rotational uniform magnetic field to actuate the 3D printed prototype. The uniform magnetic 
field is generated by a Halbach array composed of a circumferential array of permanent magnets, where 
the cylindrical magnetic space has diameter 𝐷 (= 104𝑚𝑚)  and height ℎ (= 26𝑚𝑚) , as shown in 
Supplementary Figure 11b. A uniform magnetic field is applied in the radial direction of the cylindrical hole 
with a magnitude of 80 mT. 
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Supplementary Figure 11. A magnetically triggered reconfigurable structure: (a) hyperboloid reconfigurable modular origami 
structure with a spatially gradient tessellation of a tetrahedron reference unit followed by geometric modification and 
topological reconstruction; (b) the Halbach array provides a rotational uniform magnetic field; (c) locations of permanent 
magnets embedded in the prototype; (d) remanent flux orientation of permanent magnets in the hyperboloid prototype.  

Validation of motion with experiment 

To validate our numerical algorithm of inverse design of reconfigurability, we fabricated one reconfigurable 
structure — the spherical structure with tetrahedron and octahedron modules of Figure 3b in the main 
text. Note that the reconfigurable structure has 10 DOFs after the topological reconstruction, as shown in 
Figure 3a7 of the main text. We used a 3D scanner (Einscan Pro) to capture the transformed shapes of an 
SLA 3D printed prototype. We compared the 10 dihedral angles of the reconfigurable structure during 
transformation obtained by numerical simulation and 3D scanned measurement, as shown in 
Supplementary Figure 12.   

Our model reasonably matches the experiment. The measured configurations were close to the simulated 
ones, as shown in Supplementary Figures 12a–12d. The measurement shows an average mismatch of 

~3° ≤
1

𝑁
∑|∆𝜙| ≤ 13° depending on the configurations and angles measured. Note that it is challenging 

to match our model with the experiment due to the comprehensive and accumulated errors such as 
calibration errors by the perspective 3D scanning view, hidden parts of interior connections during 3D 
scanning, dimensional errors during 3D printing, and so on. 
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Supplementary Figure 12. Quantitative comparison of transformations obtained from numerical simulations and experimental 
measurements using 3D scanning: (a)–(d) transformed configurations of a spherical architected structure with tetrahedron and 
octahedron modules; (e) a 3D-printed prototype for 3D scanning; (f) dihedral angles from the numerical model and experimental 
measurement; upper row: numerical model with 10 dihedral angles 𝜙 as DOFs; lower row: measurement by 3D scanning.  
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